Friday, 3 July 2015

Largest Rectangle

Problem Statement
There are N buildings in a certain one-dimensional landscape. Each building has a height given by hi,i[1,N]. If you join K adjacent buildings, they will form a solid rectangle of area K×min(hi,hi+1,,hi+k1).
Given N buildings, find the greatest such solid area formed by consecutive buildings.
Input Format
The first line contains N, the number of buildings altogether.
The second line contains N space-separated integers, each representing the height of a building.
Constraints
1N105
1hi106
Output Format
One integer representing the maximum area of rectangle formed.
Sample Input
5
1 2 3 4 5
Sample Output
9

/*CODE*/


#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
int max(int x, int y, int z)
{  return max(max(x, y), z); }
// A utility function to get minimum of two numbers in hist[]
int minVal(int *hist, int i, int j)
{
    if (i == -1) return j;
    if (j == -1) return i;
    return (hist[i] < hist[j])? i : j;
}
// A utility function to get the middle index from corner indexes.
int getMid(int s, int e)
{   return s + (e -s)/2; }
/*  A recursive function to get the index of minimum value in a given range of
    indexes. The following are parameters for this function.
    hist   --> Input array for which segment tree is built
    st    --> Pointer to segment tree
    index --> Index of current node in the segment tree. Initially 0 is
             passed as root is always at index 0
    ss & se  --> Starting and ending indexes of the segment represented by
                 current node, i.e., st[index]
    qs & qe  --> Starting and ending indexes of query range */
int RMQUtil(int *hist, int *st, int ss, int se, int qs, int qe, int index)
{
    // If segment of this node is a part of given range, then return the
    // min of the segment
    if (qs <= ss && qe >= se)
        return st[index];
    // If segment of this node is outside the given range
    if (se < qs || ss > qe)
        return -1;
    // If a part of this segment overlaps with the given range
    int mid = getMid(ss, se);
    return minVal(hist, RMQUtil(hist, st, ss, mid, qs, qe, 2*index+1),
                  RMQUtil(hist, st, mid+1, se, qs, qe, 2*index+2));
}
// Return index of minimum element in range from index qs (quey start) to
// qe (query end).  It mainly uses RMQUtil()
int RMQ(int *hist, int *st, int n, int qs, int qe)
{
    // Check for erroneous input values
    if (qs < 0 || qe > n-1 || qs > qe)
    {
        cout << "Invalid Input";
        return -1;
    }
    return RMQUtil(hist, st, 0, n-1, qs, qe, 0);
}
// A recursive function that constructs Segment Tree for hist[ss..se].
// si is index of current node in segment tree st
int constructSTUtil(int hist[], int ss, int se, int *st, int si)
{
    // If there is one element in array, store it in current node of
    // segment tree and return
    if (ss == se)
       return (st[si] = ss);
    // If there are more than one elements, then recur for left and
    // right subtrees and store the minimum of two values in this node
    int mid = getMid(ss, se);
    st[si] =  minVal(hist, constructSTUtil(hist, ss, mid, st, si*2+1),
                     constructSTUtil(hist, mid+1, se, st, si*2+2));
    return st[si];
}
/* Function to construct segment tree from given array. This function
   allocates memory for segment tree and calls constructSTUtil() to
   fill the allocated memory */
int *constructST(int hist[], int n)
{
    // Allocate memory for segment tree
    int x = (int)(ceil(log2(n))); //Height of segment tree
    int max_size = 2*(int)pow(2, x) - 1; //Maximum size of segment tree
    int *st = new int[max_size];
    // Fill the allocated memory st
    constructSTUtil(hist, 0, n-1, st, 0);
    // Return the constructed segment tree
    return st;
}
int getMaxAreaRec(int *hist, int *st, int n, int l, int r)
{
    // Base cases
    if (l > r)  return -1;
    if (l == r)  return hist[l];
    // Find index of the minimum value in given range
    // This takes O(Logn)time
    int m = RMQ(hist, st, n, l, r);
    /* Return maximum of following three possible cases
       a) Maximum area in Left of min value (not including the min)
       a) Maximum area in right of min value (not including the min)
       c) Maximum area including min */
    return max(getMaxAreaRec(hist, st, n, l, m-1),
               getMaxAreaRec(hist, st, n, m+1, r),
               (r-l+1)*(hist[m]) );
}
// The main function to find max area
int getMaxArea(int hist[], int n)
{
    // Build segment tree from given array. This takes
    // O(n) time
    int *st = constructST(hist, n);
    // Use recursive utility function to find the
    // maximum area
    return getMaxAreaRec(hist, st, n, 0, n-1);
}

int main() {
    /* Enter your code here. Read input from STDIN. Print output to STDOUT */   
    int N;
    cin>>N;
    int hist[N];
    //int n = sizeof(hist)/sizeof(hist[0]);
    int n=N;
    for(int i=0;i<N;i++)
        cin>>hist[i];
    cout <<getMaxArea(hist, n);
    return 0;
}